Sains Malaysiana 53(1)(2024): 189-200

http://doi.org/10.17576/jsm-2024-5301-15

 

Fabrication of Adsorbent using Nano-Sized Lignocellulosic Biochar Coated on Luffa aegyptiaca Sponge to Remove Heavy Metal Chromium VI

(Pembuatan Penjerap menggunakan Bioarang Lignoselulosa Bersaiz Nano Disalut pada Span Luffa aegyptiaca untuk Menyingkirkan Logam Berat Kromium VI)

ELFI YULIA1,2,3, BAMBANG SUNENDAR PURWASASMITA1,2, NUGRAHA1, ESTIYANTI EKAWATI1,3,* & ASHARI BUDI NUGRAHA1,2

 

1Department of Engineering Physics, Faculty of Industrial Technology, Institut Teknologi Bandung, 40132, Indonesia

2Advanced Material Processing Laboratory, Faculty of Industrial Technology, Institut Teknologi Bandung, 40132, Indonesia

3Center for Instrumentation Technology and Automation, Institut Teknologi Bandung, 40132, Indonesia

 

Received: 17 August 2023/Accepted: 26 December 2023

 

Abstract

Eliminating heavy metal Cr (VI) in liquids is challenging. Developing adsorbents using sustainable, cheap, and biodegradable materials is still a concern. Therefore, this study aims to synthesize a heavy metal adsorbent by transforming forest residue into nano-sized lignocellulose biochar. This nano-sized lignocellulosic biochar, with the assistance of chitosan and alginate, was coated onto the Luffa aegyptiaca sponge surface to complete the structure of the proposed heavy metal adsorbent. This adsorbent is easy to apply in adsorbing heavy metals, is durable, and can be reused. The adsorbent products were characterized to observe the functional groups by Fourier Transform Infrared (FTIR) and surface morphology by Scanning Electron Microscopy (SEM). The adsorbents were also experimented with contact times of 120 and 1200 minutes in the adsorption process. The decrease in heavy metal concentration was analyzed by Atomic Absorption Spectroscopy (AAS). Scanning Electron Microscopy with Energy Dispersive X-ray spectroscopy (SEM-EDX) observed the adsorbent surface that has absorbed heavy metal ions. FTIR characterization of surface functional groups showed the presence of hydrogen, aliphatic C-H group, C=C aromatic ring, carboxyl groups, and carbonate ion, capable of binding heavy metal Cr (VI). The morphology of the adsorbent coated on luffa showed that the adsorbent was well attached. The results of the adsorption process showed a decrease in Cr (VI) concentration, with adsorption efficiency reaching 94% for 1200 min and adsorption capacity of 0.36 mg/g. SEM-EDX results validated the attachment of Cr (VI) heavy metal ions to the adsorbent surface.

 

Keywords: Adsorbent coating; forest residual; lignocellulosic biochar; Luffa aegyptiaca

 

Abstrak

Menyingkirkan logam berat Cr (VI) dalam cecair adalah satu cabaran. Membangunkan bahan penjerap menggunakan bahan yang mampan, murah dan boleh terurai masih menjadi kebimbangan. Oleh itu, kajian ini bertujuan untuk mensintesis bahan penjerap logam berat dengan menukar sisa hutan menjadi bioarang lignoselulosa bersaiz nano. Bioarang lignoselulosa bersaiz nano ini, dengan bantuan kitosan dan alginat, telah disalutkan ke atas permukaan span Luffa aegyptiaca untuk melengkapkan struktur bahan penjerap logam berat yang dicadangkan. Bahan penjerap ini memberikan kelebihan dalam penggunaannya yang mudah dalam menjerap logam berat, tahan lama dalam larutan dan boleh digunakan semula. Produk penjerap ini telah dicirikan untuk mengesan kumpulan berfungsi dengan Infra-Merah Transform Fourier (FTIR) dan morfologi permukaan dengan Mikroskopi Elektron Pengimbasan (SEM). Bahan penjerap juga diuji dengan masa sentuhan 120 dan 1200 minit dalam proses penjerapan. Penurunan dalam kepekatan logam berat dianalisis dengan Spektroskopi Serapan Atom (AAS). Mikroskopi Elektron Pengimbasan bersama Spektroskopi Serakan Tenaga Sinar-X (SEM-EDX) mengesan permukaan penjerap yang telah menyerap ion logam berat. Pencirian FTIR bagi kumpulan berfungsi permukaan menunjukkan kehadiran hidrogen, kumpulan alifatik C-H, cincin aromatik C=C, kumpulan karboksil dan ion karbonat yang mampu mengikat logam berat Cr (VI). Morfologi bahan penjerap yang disalutkan pada luffa menunjukkan bahawa bahan penjerap melekat dengan baik. Keputusan proses penjerapan menunjukkan penurunan kepekatan Cr (VI), dengan keberkesanan penjerapan mencapai 94% untuk 1200 minit dan kapasiti penjerapan sebanyak 0.36 mg/g. Keputusan SEM-EDX mengesahkan sangkutan ion logam berat Cr (VI) kepada permukaan bahan penjerap.

 

Kata kunci: Bioarang lignoselulosa; lapisan penjerap; Luffa aegyptiaca; sisa hutan lignoselulosa

 

REFERENCES

 

Ablouh, E.H., Hanani, Z., Eladlani, N., Rhazi, M. & Taourirte, M. 2019. Chitosan microspheres/sodium alginate hybrid beads: An efficient green adsorbent for heavy metals removal from aqueous solutions. Sustainable Environment Research 29: 5.

Ahmad, M., Manzoor, K. & Ikram, S. 2017. Versatile nature of hetero-chitosan based derivatives as biodegradable adsorbent for heavy metal ions: A review. International Journal of Biological Macromolecules 105: 190-203.

Aminatun, Adri Supardi, Zulifah Izzatin Nisa, Dyah Hikmawati & Siswanto. 2019. Synthesis of nanohydroxyapatite from cuttlefish bone (Sepia sp.) using milling method. International Journal of Biomaterials 2019: 1831208.

Anastopoulos, I. & Pashalidis, I. 2020. Environmental applications of Luffa cylindrica-Based adsorbents. Journal of Molecular Liquids 319: 114127.

Arana, J., González, S., Navarrete, L. & Caicedo, O. 2017. Luffa cylindrica como adsorbente natural de ion cianuro en medio acuoso. DYNA (Colombia) 84(201): 210-215.

Arellano-Sánchez, M.G., Devouge-Boyer, C., Hubert-Roux, M., Afonso, C. & Mignot, M. 2021. Quantitative extraction of chromium VI and III from tanned leather: A comparative study of pretreatment methods. Journal of Leather Science and Engineering 3: 30.

Asep Bayu Dani Nandiyanto, Rosi Oktiani & Risti Ragadhita. 2019. How to read and interpret FTIR spectroscope of organic material. Indonesian Journal of Science & Technology 4(1): 97-118.

Aslam, S., Yousafzai, A.M. & Javed, A. 2022. Bioaccumulation of hexavalent chromium in commercially edible fish grass carp, Ctenopharyngodon idella. Sains Malaysiana 51(9): 2757-2762.

Baharim, N.H., Sjahrir, F., Mohd Taib, R., Idris, N. & Tuan Azmar Tuan Daud. 2023. Methylene blue adsorption by acid post-treated low temperature biochar derived from banana (Musa acuminata) pseudostem. Sains Malaysiana 52(2): 547-561.

Biju, L.M., Pooshana, V., Senthil Kumar, P., Veena Gayathri, K., Ansar, S. & Govindaraju, S. 2022. Treatment of textile wastewater containing mixed toxic azo dye and chromium (VI) by haloalkaliphilic bacterial consortium. Chemosphere 287(P3): 132280.

Briffa, J., Sinagra, E. & Blundell, R. 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon 6 (9): e04691.

Burk, G.A., Herath, A., Crisler, G.B., Bridges, D., Patel, S., Pittman, C.U. & Mlsna, T. 2020. Cadmium and copper removal from aqueous solutions using chitosan-coated gasifier biochar. Frontiers in Environmental Science 8: 541203.

Cataldo, S., Gianguzza, A., Milea, D., Muratore, N. & Pettignano, A. 2016. Pb(II) adsorption by a novel activated carbon–Alginate composite material. a kinetic and equilibrium study. International Journal of Biological Macromolecules 92: 769-778.

Chemerys, V. & Baltrėnaitė, E. 2018a. A review of lignocellulosic biochar modification towards enhanced biochar selectivity and adsorption capacity of potentially toxic elements. Ukrainian Journal of Ecology 8(1): 21-32.

Chemerys, V. & Baltrėnaitė, E. 2018b. Influence of intrinsic properties of lignocellulosic feedstock on adsorptive properties of biochar. Journal of Environmental Engineering 144(9). https://doi.org/10.1061/(asce)ee.1943-7870.0001420

Chun, Y., Kim, K.R., Kim, H.R., Lee, S.K., Lee, J.H., Lee, J.H., Park, C., Yoo, H.Y. & Kim, S.W. 2022. Mechanical improvement of biochar-alginate composite by using melamine sponge as support and application to Cu(II) removal. Journal of Polymers and the Environment 30(5): 2037-2049.

Crini, G., Lichtfouse, E., Wilson, L. & Morin-crini, N. 2019. Conventional and non-conventional adsorbents for wastewater treatment. Environmental Chemistry Letters 17(1): 195-213.

Deng, J., Liu, Y., Liu, S., Zeng, G., Tan, X., Huang, B., Tang, X., Wang, S., Hua, Q. & Yan, Z. 2017. Competitive adsorption of Pb(II), Cd(II), and Cu(II) onto chitosan-pyromellitic dianhydride modified biochar. Journal of Colloid and Interface Science 506: 355-364.

Elfi Yulia, Estiyanti Ekawati & Bambang Sunendar Purwasasmita. 2023. A review on waste-based biochar adsorbent for adsorption process in batik wastewater treatment. AIP Conference Proceedings 2580(1): 50034.

Elfi Yulia, Nugraha, Estiyanti Ekawati, Ashari Budi Nugraha, Bambang Sunendar Purwasasmita & Moch. Saifur Rijal. 2023. Effect of milling on forest residue derived biochar with high energy milling ellipse 3 dimension. Solid State Phenomena 349: 103-108.

Gao, N., Du, W., Zhang, M., Ling, G. & Zhang, P. 2022. Chitosan-modified biochar: Preparation, modifications, mechanisms and applications. International Journal of Biological Macromolecules 209(PA): 31-49.

Hamid, Y., Liu, L., Haris, M., Usman, M., Lin, Q., Chen, Y., Rashid, M.S., Ulhassan, Z., Hussain, M.I. & Yang, X. 2023. Novel thiol-grafted composite of chitosan and rice straw biochar (TH@CT-BC): A two-step fabrication for highly selective adsorption of cadmium from contaminated water. Journal of Environmental Chemical Engineering 11(5): 110527.

He, X., Nkoh Nkoh, J., Shi, R.Y. & Xu, R.K. 2022. Application of chitosan- and alginate-modified biochars in promoting the resistance to paddy soil acidification and immobilization of soil cadmium. Environmental Pollution 313(July): 120175.

Inyang, M.I., Gao, B., Yao, Y., Xue, Y., Zimmerman, A., Mosa, A., Pullammanappallil, P., Ok, Y.S. & Cao, X. 2016. A review of biochar as a low-cost adsorbent for aqueous heavy metal removal. Critical Reviews in Environmental Science and Technology 46(4): 406-433.

Kong, C., Zhao, X., Li, Y., Yang, S., Chen, Y.M. & Yang, Z. 2020. Ion-induced synthesis of alginate fibroid hydrogel for heavy metal ions removal. Frontiers in Chemistry 7: 00905.

Kong, Q., He, X., Shu, L. & Miao, M.S. 2017. Ofloxacin adsorption by activated carbon derived from luffa sponge: Kinetic, isotherm, and thermodynamic analyses. Process Safety and Environmental Protection 112: 254-264.

Kwapinski, W., Byrne, C.M.P., Kryachko, E., Wolfram, P., Adley, C., Leahy, J.J., Novotny, E.H. & Hayes, M.H.B. 2010. Biochar from biomass and waste. Waste and Biomass Valorization 1: 177-189.

Liu, C., Yan, C., Luo, W., Li, X., Ge, W. & Zhou, S. 2015. Simple preparation and enhanced adsorption properties of loofah fiber adsorbent by ultraviolet radiation graft. Materials Letters 157: 303-306.

Lu, H., Zhang, W., Yang, Y., Huang, X., Wang, S. & Qiu, R. 2012. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water Research 46(3): 854-862.

Mahmoud, M.E. & Ibrahim, G.A.A. 2023. Cr(VI) and doxorubicin adsorptive capture by a novel bionanocomposite of Ti-MOF@TiO2 incorporated with watermelon biochar and chitosan hydrogel. International Journal of Biological Macromolecules 253(Part 1): 126489.

Mohiuddin, E., Mdleleni, M.M. & Key, D. 2018. Catalytic cracking of naphtha: The effect of Fe and Cr impregnated ZSM-5 on olefin selectivity. Applied Petrochemical Research 8(2): 119-129.

Mukherjee, A., Patra, B.R., Podder, J. & Dalai, A.K. 2022. Synthesis of biochar from lignocellulosic biomass for diverse industrial applications and energy harvesting: effects of pyrolysis conditions on the physicochemical properties of biochar. Frontiers in Materials 9: 1-23.

Nadaroglu, H., Cicek, S. & Gungor, A.A. 2017. Removing trypan blue dye using nano-Zn modified luffa sponge. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy 172: 2-8.

Perera, H.M., Rajapaksha, A.U., Liyanage, S., Ekanayake, A., Selvasembian, R., Daverey, A. & Vithanage, M. 2023. Enhanced adsorptive removal of hexavalent chromium in aqueous media using chitosan-modified biochar: Synthesis, sorption mechanism, and reusability. Environmental Research 231(P1): 115982.

Schio, R.R., Gonçalves, J.O., Mallmann, E.S., Pinto, D. & Dotto, G.L. 2021. Development of a biosponge based on Luffa cylindrica and crosslinked chitosan for Allura red AC adsorption. International Journal of Biological Macromolecules 192: 1117-1122.

Son Tran, V., Hao Ngo, H., Guo, W., Ha Nguyen, T., Mai Ly Luong, T., Huan Nguyen, X., Lan Anh Phan, T., Trong Le, V., Phuong Nguyen, M. & Khai Nguyen, M. 2023. New chitosan-biochar composite derived from agricultural waste for removing sulfamethoxazole antibiotics in water. Bioresource Technology 385: 129384.

Sri Lestari, Ratna Stia Dewi, Eko Setio Wibowo & Atang. 2020. Modified tea bag biosorbent as Cr (VI) removal in batik wastewater. IOP Conference Series: Earth and Environmental Science 593: 012030.

Sutirman, Z.A., Sanagi, M.M. & Wan Ibrahim, W.A. 2021. Alginate-based adsorbents for removal of metal ions and radionuclides from aqueous solutions: A review. International Journal of Biological Macromolecules 174: 216-228.

Usman, A., Sallam, A., Al-Omran, A., El-Naggar, A., Alenazi, K., Nadeem, M. & Al-Wabel, M. 2013. Chemically modified biochar produced from conocarpus wastes: An efficient sorbent for Fe(II) removal from acidic aqueous solutions. Adsorption Science and Technology 31(7): 625-640.

Vieira, Y., dos Santos, J.M.N., Georgin, J., Oliveira, M.L.S., Pinto, D. & Dotto, G.L. 2022. An overview of forest residues as promising low-cost adsorbents. Gondwana Research 110: 393-420.

Wang, H., Xia, H., Chen, Q., Liu, R. & Zhang, Y. 2023. Enhanced removal capacities and mechanisms of Mn/Fe-loaded biochar composites functionalized with chitosan schiff-base or hydroxyl toward Pb(II) and Cd(II) from aqueous solutions. Journal of Environmental Chemical Engineering 11(5): 111132.

Wang, H., Liu, C., Huang, X., Jia, C., Cao, Y., Hu, L., Lu, R., Zhang, S., Gao, H., Zhou, W. & Xu, D. 2018. Ionic liquid-modified luffa sponge fibers for dispersive solid-phase extraction of benzoylurea insecticides from water and tea beverage samples. New Journal of Chemistry 42(11): 8791-8799.

Wang, Z., Wang, G., Li, W., Cui, Z., Wu, J., Akpinar, I., Yu, L., He, G. & Hu, J. 2021. Loofah activated carbon with hierarchical structures for high-efficiency adsorption of multi-level antibiotic pollutants. Applied Surface Science 550: 149313.

Wang, Z., Huang, Y., Wang, M., Wu, G., Geng, T., Zhao, Y. & Wu, A. 2016. Macroporous calcium alginate aerogel as sorbent for Pb2+ removal from water media. Journal of Environmental Chemical Engineering 4(3): 3185-3192.

Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C.W., Ok, Y.S. & Gao, B. 2020. Biochar technology in wastewater treatment: A critical review. Chemosphere 252: 126539.

Zhang, J. & Li, S. 2021. Sensors for detection of Cr(VI) in water: A review. International Journal of Environmental Analytical Chemistry 101(8): 1051-1073.

Zhao, Y., Song, Y., Li, R., Lu, F., Yang, Y., Huang, Q., Deng, D., Wu, M. & Li, Y. 2023. Enhanced reactive brilliant blue removal using chitosan–Biochar hydrogel beads. Molecules 28(16): 6137.

Zhou, Y., Gao, B., Zimmerman, A.R., Fang, J., Sun, Y. & Cao, X. 2013. Sorption of heavy metals on chitosan-modified biochars and its biological effects. Chemical Engineering Journal 231: 512-518.

 

*Corresponding author; email: esti@itb.ac.id

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

previous